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STRONG STABILITY PRESERVING HIGH-ORDER TIME DISCRETIZATION

METHODS

SIGAL GOTTLIEB�, CHI-WANG SHUy, AND EITAN TADMORz

Abstract. In this paper we review and further develop a class of strong-stability preserving (SSP)

high-order time discretizations for semi-discrete method-of-lines approximations of partial di�erential equa-

tions. Termed TVD (total variation diminishing) time discretizations before, this class of high-order time

discretization methods preserves the strong-stability properties of �rst-order Euler time stepping and has

proved very useful especially in solving hyperbolic partial di�erential equations. The new contributions in

this paper include the development of optimal explicit SSP linear Runge-Kutta methods, their application

to the strong stability of coercive approximations, a systematic study of explicit SSP multi-step methods,

and a study of the strong-stability preserving property of implicit Runge-Kutta and multi-step methods.

Key words. strong-stability preserving, Runge-Kutta methods, multi-step methods, high-order accu-

racy, time discretization

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. It is a common practice in solving time-dependent Partial Di�erential Equations

(PDEs) to discretize �rst the spatial variables to obtain a semi-discrete method-of-lines scheme. This is

then a system of Ordinary Di�erential Equations (ODEs) in the time variable which can be discretized and

solved by an ODE solver. A relevant question here is stability. For problems with smooth solutions, usually

a linear stability analysis is adequate. For problems with discontinuous solutions, however, such as solutions

to hyperbolic problems, a stronger measure of stability is usually required.

In this paper, we review and further develop a class of high-order strong-stability preserving (SSP) time

discretization methods for the semi-discrete method-of-lines approximations of PDEs. This class of time

discretization methods was �rst developed in [19] and [18] and was termed TVD (Total Variation Diminishing)

time discretizations. It was further developed in [6]. The idea is to assume that the �rst-order forward-Euler

time discretization of the method-of-lines ODE is strongly stable under a certain norm, when the time step,

�t, is suitably restricted, and then try to �nd a higher-order time discretization (Runge-Kutta or multi-

step) that maintains strong stability for the same norm, perhaps under a di�erent time-step restriction. In

[19] and [18], the relevant norm was the total variation norm: the Euler forward time discretization of the

method-of-lines ODE was assumed TVD, hence the class of high-order time discretization developed there

was termed TVD time discretizations. This terminology was kept also in [6]. In fact, the essence of this

class of high-order time discretizations lies in its ability to maintain the strong stability in the same norm

as the �rst-order forward Euler version, hence \strong stability preserving", or SSP, time discretization is a
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more suitable term which will be used in this paper.

We begin this paper by discussing explicit SSP methods. We �rst give, in x2, a brief introduction for

the setup and basic properties of the methods. We then move in x3 to our new results on optimal SSP

Runge-Kutta methods of arbitrary order of accuracy for linear ODEs suitable for solving PDEs with linear

spatial discretizations. This is used to prove strong stability for a class of well-posed problems ut = L(u)

where the operator L is linear and coercive, improving and simplifying the proofs for the results in [13]. We

review and further develop the results in [19], [18] and [6] for nonlinear SSP Runge-Kutta methods in x4 and
multi-step methods in x5. Section 6 of this paper contains our new results on implicit SSP schemes. It starts

with a numerical example showing the necessity of preserving the strong stability property of the method,

then it moves on to the analysis of the rather disappointing negative results about the non-existence of SSP

implicit Runge-Kutta or multi-step methods of order higher than one. Concluding remarks are given in x7.

2. Explicit SSP Methods.

2.1. Why SSP methods?. Explicit SSP methods were developed in [19] and [18] (termed TVD time

discretizations there) to solve systems of ODEs

d

dt
u = L(u);(2.1)

resulting from a method-of-lines approximation of the hyperbolic conservation law,

ut = �f(u)x;(2.2)

where the spatial derivative, f(u)x, is discretized by a TVD �nite di�erence or �nite element approximation,

e.g., [8], [16], [20], [2], [9]; consult [21] for a recent overview. Denoted by �L(u), it is assumed that the

spatial discretization has the property that when it is combined with the �rst-order forward Euler time

discretization,

un+1 = un +�tL(un);(2.3)

then, for a su�ciently small time step dictated by the CFL condition,

�t � �tFE ;(2.4)

the Total Variation (TV) of the one-dimensional discrete solution un :=
P

j u
n
j 1fxj� 1

2

�x�x
j+1

2

g does not

increase in time, i.e., the following, so called TVD property, holds

TV (un+1) � TV (un); TV (un) :=
X
j

junj+1 � unj j:(2.5)

The objective of the high order SSP Runge-Kutta or multi-step time discretization is to maintain the

strong stability property (2.5) while achieving higher-order accuracy in time, perhaps with a modi�ed CFL

restriction (measured here with a CFL coe�cient, c)

�t � c�tFE :(2.6)

In [6] we gave numerical evidence to show that oscillations may occur when using a linearly stable,

high-order method which lacks the strong stability property, even if the same spatial discretization is TVD
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Fig. 2.1. Second-order TVD MUSCL spatial discretization. Solution after the shock moves 50 mesh points. Left: SSP

time discretization; Right: non-SSP time discretization.

when combined with the �rst-order forward Euler time discretization. The example is illustrative, so we

reproduce it here. We consider a scalar conservation law, the familiar Burgers' equation

ut +

�
1

2
u2
�
x

= 0(2.7)

with a Riemann initial data:

u(x; 0) =

(
1; if x � 0

�0:5; if x > 0.
(2.8)

The spatial discretization is obtained by a second-order MUSCL [12], which is TVD for forward Euler time

discretization under suitable CFL restriction.

In Fig. 2.1, we show the result of using a SSP second-order Runge-Kutta method for the time discretiza-

tion (left), and that of using a non-SSP second-order Runge-Kutta method (right). We can clearly see that

the non-SSP result is oscillatory (there is an overshoot).

This simple numerical example illustrates that it is safer to use a SSP time discretization for solving

hyperbolic problems. After all, they do not increase the computational cost and have the extra assurance of

provable stability.

As we have already mentioned above, the high-order SSP methods discussed here are not restricted

to preserving (not increasing) the total variation. Our arguments below rely on convexity, hence these

properties hold for any norm. Consequently, SSP methods have a wide range of applicability, as they can

be used to ensure stability in an arbitrary norm, once the forward Euler time discretization is shown to

be strongly stable1, i.e., kun + �tL(un)k � kunk. For linear examples we refer to [7], where weighted L2

SSP higher-order discretizations of spectral schemes are discussed. For nonlinear scalar conservation laws in

several space dimensions, the TVD property is ruled out for high-resolution schemes; instead, strong stability

in the maximum norm is sought. Applications of L1-SSP higher-order discretization can be found in [3],

[9] for discontinuous Galerkin and central schemes. Finally, we note that since our arguments below are

based on convex decompositions of high-order methods in terms of the �rst-order Euler method, any convex

1By the notion of strong stability we refer to the fact that there is no temporal growth, as opposed to the general notion of

stability which allows a bounded temporal growth, kunk � Const � ku0k with any arbitrary constant, possibly Const > 1.
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function will be preserved by such high-order time discretizations. In this context we refer, for example, to

the cell entropy stability property of high-order schemes studied in [17], [15].

2.2. SSP Runge-Kutta methods. In [19], a generalm stage Runge-Kutta method for (2.1) is written

in the form:

u(0) = un;

u(i) =

i�1X
k=0

�
�i;ku

(k) +�t�i;kL(u
(k))
�
; �i;k � 0; i = 1; :::;m(2.9)

un+1 = u(m):

Clearly, if all the �i;k's are nonnegative, �i;k � 0, then since by consistency
Pi�1

k=0 �i;k = 1, it follows that

the intermediate stages in (2.9), u(i), amount to convex combinations of forward Euler operators, with �t

replaced by
�i;k
�i;k

�t, We, thus, conclude

Lemma 2.1. [19]. If the forward Euler method (2.3) is strongly stable under the CFL restriction (2.4),

kun+�tL(un)k � kunk, then the Runge-Kutta method (2.9) with �i;k � 0 is SSP, kun+1k � kunk, provided
the following CFL restriction (2.6) is ful�lled,

�t � c�tFE ; c = min
i;k

�i;k
�i;k

:(2.10)

If some of the �i;k's are negative, we need to introduce an associated operator ~L corresponding to

stepping backward in time. The requirement for ~L is that it approximates the same spatial derivative(s) as

L, but that the strong stability property holds kun+1k � kunk, ({ either with respect to the TV or another

relevant norm), for �rst-order Euler scheme, solved backward in time, i.e.,

un+1 = un ��t~L(un):(2.11)

This can be achieved, for hyperbolic conservation laws, by solving the negative in time version of (2.2),

ut = f(u)x:(2.12)

Numerically, the only di�erence is the change of upwind direction. Clearly, ~L can be computed with the

same cost as that of computing L. We then have the following lemma.

Lemma 2.2. [19]. If the forward Euler method combined with the spatial discretization L in (2.3)

is strongly stable under the CFL restriction (2.4), kun + �tL(un)k � kunk, and if Euler's method solved

backward in time in combination with the spatial discretization ~L in (2.11) is also strongly stable under the

CFL restriction (2.4), kun ��t~L(un)k � kunk, then the Runge-Kutta method (2.9) is SSP kun+1k � kunk,
under the CFL restriction (2.6),

�t � c�tFE ; c = min
i;k

�i;k
j�i;kj ;(2.13)

provided �i;kL is replaced by �i;k ~L whenever �i;k is negative.

Notice that, if for the same k, both L(u(k)) and ~L(u(k)) must be computed, the cost as well as storage

requirement for this k is doubled. For this reason, we would like to avoid negative �i;k as much as possible.

However, as shown in [6], it is not always possible to avoid negative �i;k.

4



2.3. SSP multi-step methods. SSP multi-step methods of the form:

un+1 =

mX
i=1

�
�iu

n+1�i +�t�iL(u
n+1�i)

�
; �i � 0;(2.14)

were studied in [18]. Since
P

�i = 1, it follows that un+1 is given by a convex combination of forward Euler

solvers with suitably scaled �t's, and hence, similar to our discussion for Runge-Kutta methods we arrive

at the following lemma.

Lemma 2.3. [18]. If the forward Euler method combined with the spatial discretization L in (2.3)

is strongly stable under the CFL restriction (2.4), kun + �tL(un)k � kunk, and if Euler's method solved

backward in time in combination with the spatial discretization ~L in (2.11) is also strongly stable under the

CFL restriction (2.4), kun ��t~L(un)k � kunk, then the multi-step method (2.14) is SSP kun+1k � kunk,
under the CFL restriction (2.6),

�t � c�tFE ; c = min
i

�i
j�ij ;(2.15)

provided �iL(�) is replaced by �i ~L(�) whenever �i is negative.

3. Linear SSP Runge-Kutta Methods of Arbitrary Order.

3.1. SSP Runge-Kutta methods with optimal CFL condition. In this section we present a class

of optimal (in the sense of CFL number) SSP Runge-Kutta methods of any order for the ODE (2.1) where

L is linear. With a linear L being realized as a �nite dimensional matrix we denote, L(u) = Lu. We will

�rst show that the m-stage, m-th order SSP Runge-Kutta method can have, at most, CFL coe�cient c = 1

in (2.10). We then proceed to construct optimal SSP linear Runge-Kutta methods.

Proposition 3.1. Consider the family of m-stage, m-th order SSP Runge-Kutta methods (2.9) with

nonnegative coe�cients �i;k and �i;k. The maximum CFL coe�cient attainable for such methods is the one

dictated by the forward Euler scheme,

�t � �tFE ;

i.e., (2.6) holds with maximal CFL coe�cient c = 1.

Proof. We consider the special case where L is linear, and prove that even in this special case the maximum

CFL coe�cient c attainable is 1. Any m-stage method (2.9), for this linear case, can be rewritten as:

u(i) =

 
1 +

i�1X
k=0

Ai;k(�tL)
k+1

!
u(0); i = 1; :::;m

where

A1;0 = �1;0; Ai;0 =

i�1X
k=1

�i;kAk;0 +

i�1X
k=0

�i;k;

Ai;k =

i�1X
j=k+1

�i;jAj;k +

i�1X
j=k

�i;jAj;k�1; k = 1; :::; i� 1:
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In particular, using induction, it is easy to show that the last two terms of the �nal stage can be expanded

as

Am;m�1 =

mY
l=1

�l;l�1

Am;m�2 =

mX
k=2

�k;k�2

 
mY

l=k+1

�l;l�1

! 
k�2Y
l=1

�l;l�1

!
+

mX
k=1

�k;k�1

0
@ mY

l=1;l6=k

�l;l�1

1
A :

For am-stage,m-th order linear Runge-Kutta scheme Am;k =
1

(k+1)! : Using Am;m�1 =
Qm

l=1 �l;l�1 =
1
m! ,

we can rewrite

Am;m�2 =

mX
k=1

�k;k�1
m!�k;k�1

+

mX
k=2

�k;k�2

 
mY

l=k+1

�l;l�1

! 
k�2Y
l=1

�l;l�1

!
:

With the non-negative assumption on �i;k's and the fact Am;m�1 =
Qm

l=1 �l;l�1 =
1
m! we have �l;l�1 > 0 for

all l. For the CFL coe�cient c � 1 we must have
�k;k�1

�k;k�1
� 1 for all k. Clearly, Am;m�2 =

1
(m�1)! is possible

under these restrictions only if �k;k�2 = 0 and
�k;k�1

�k;k�1
= 1 for all k, in which case the CFL coe�cient c � 1.

We remark that the conclusion of Proposition 3.1 is valid only if the m-stage Runge-Kutta method is

m-th order accurate. In [18], we constructed an m-stage, �rst-order SSP Runge-Kutta method with a CFL

coe�cient c = m which is suitable for steady state calculations.

The proof above also suggests a construction for the optimal linear m-stage, m-th order SSP Runge-

Kutta methods.

Proposition 3.2. The class of m stage schemes given (recursively) by:

u(i) = u(i�1) +�tLu(i�1); i = 1; :::;m� 1(3.1)

u(m) =

m�2X
k=0

�m;ku
(k) + �m;m�1

�
u(m�1) +�tLu(m�1)

�
;

where �1;0 = 1 and

�m;k =
1

k
�m�1;k�1; k = 1; :::;m� 2(3.2)

�m;m�1 =
1

m!
; �m;0 = 1�

m�1X
k=1

�m;k

is an m-order linear Runge-Kutta method which is SSP with CFL coe�cient c = 1,

�t � �tFE :

Proof. The �rst-order case is forward Euler, which is �rst-order accurate, and SSP with CFL coe�cient

c = 1 by de�nition. The other schemes will be SSP with a CFL coe�cient c = 1 by construction, as long as

the coe�cients are non-negative.

We now show that scheme (3.1)-(3.2) is m-th order accurate when L is linear. In this case clearly

u(i) = (1 +�tL)i u(0) =

 
iX

k=0

i!

k!(i� k)!
(�tL)k

!
u(0); i = 1; :::;m� 1;
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hence scheme (3.1)-(3.2) results in

u(m) =

0
@m�2X

j=0

�m;j

jX
k=0

j!

k!(j � k)!
(�tL)k + �m;m�1

mX
k=0

m!

k!(m� k)!
(�tL)k

1
Au(0):

Clearly, by (3.2), the coe�cient of (�tL)m�1 is �m;m�1
m!

(m�1)! = 1
(m�1)! , the coe�cient of (�tL)m is

�m;m�1 =
1
m! , and the coe�cient of (�tL)0 is

1

m!
+

m�2X
j=0

�m;j = 1:

It remains to show that, for 1 � k � m� 2, the coe�cient of (�tL)k is equal to 1
k! :

1

k!(m� k)!
+

m�2X
j=k

�m;j
j!

k!(j � k)!
=

1

k!
:(3.3)

This will be shown by induction. Thus, we assume (3.3) is true for m, then for m+ 1 we have, for 0 � k �
m� 2, the coe�cient of (�tL)k+1 is equal to

1

(k + 1)!(m� k)!
+

m�1X
j=k+1

�m+1;j
j!

(k + 1)!(j � k � 1)!
=

1

(k + 1)!

 
1

(m� k)!
+

m�2X
l=k

�m+1;l+1
(l + 1)!

(l � k)!

!

=
1

(k + 1)!

 
1

(m� k)!
+

m�2X
l=k

1

(l + 1)
�m;l

(l + 1)!

(l � k)!

!

=
1

(k + 1)!

 
1

(m� k)!
+

m�2X
l=k

�m;l
l!

(l � k)!

!

=
1

(k + 1)!

where in the second equality we used (3.2) and in the last equality we used the induction hypothesis (3.3).

This �nishes the proof.

Finally, we show that all the �'s are non-negative. Clearly �2;0 = �2;1 =
1
2 > 0. If we assume �m;j � 0

for all j = 0; :::;m� 1, then

�m+1;j =
1

j
�m;j�1 � 0; j = 1; :::;m� 1; �m+1;m =

1

(m+ 1)!
� 0;

and, by noticing that �m+1;j � �m;j�1 for all j = 1; :::;m, we have

�m+1;0 = 1�
mX
j=1

�m+1;j � 1�
mX
j=1

�m;j�1 = 0:

As the m-stage, m-th order linear Runge-Kutta method is unique, we have in e�ect proved this unique

m-stage, m-th order linear Runge-Kutta method is SSP under CFL coe�cient c = 1. If L is nonlinear,

scheme (3.1)-(3.2) is still SSP under CFL coe�cient c = 1, but it is no longer m-th order accurate. Notice

that all but the last stage of these methods are simple forward Euler steps.

We note in passing the examples of the ubiquitous third- and forth-order Runge-Kutta methods, which

admit the following convex { and hence SSP decompositions

3X
k=0

1

k!
(�tL)k =

1

3
+

1

2
(I +�tL) +

1

6
(I +�tL)3(3.4)

4X
k=0

1

k!
(�tL)k =

3

8
+

1

3
(I +�tL) +

1

4
(I +�tL)2 +

1

24
(I +�tL)4:(3.5)
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Table 3.1

Coe�cients �m;j of the SSP methods (3.1)-(3.2)

order m �m;0 �m;1 �m;2 �m;3 �m;4 �m;5 �m;6 �m;7

1 1

2 1
2

1
2

3 1
3

1
2

1
6

4 3
8

1
3

1
4

1
24

5 11
30

3
8

1
6

1
12

1
120

6 53
144

11
30

3
16

1
18

1
48

1
720

7 103
280

53
144

11
60

3
48

1
72

1
240

1
5040

8 2119
5760

103
280

53
288

11
180

1
64

1
360

1
1440

1
40320

We list, in Table 3.1, the coe�cients �m;j of these optimal methods in (3.2) up to m = 8.

3.2. Application to coercive approximations. We now apply the optimal linear SSP Runge-Kutta

methods to coercive approximations. We consider the linear system of ODEs of the general form, with

possibly variable, time-dependent coe�cients,

d

dt
u(t) = L(t)u(t):(3.6)

As an example we refer to [7], where the far-from-normal character of the spectral di�erentiation matrices

de�es the straightforward von-Neumann stability analysis when augmented with high-order time discretiza-

tions.

We begin our stability study for Runge-Kutta approximations of (3.6) with the �rst-order forward-Euler

scheme (with h�; �i denoting the usual Euclidean inner product)

un+1 = un +�tnL(t
n)un;

based on variable time-steps, tn :=
Pn�1

j=0 �tj . Taking L
2 norms on both sides one �nds

jun+1j2 = junj2 + 2�tnRehL(tn)un; uni+ (�tn)
2jL(tn)unj2;

and hence strong stability holds, jun+1j � junj, provided the following restriction on the time step, �tn, is

met,

�tn � �2RehL(tn)un; uni=jL(tn)unj2:

Following Levy and Tadmor [13], we therefore make the

Assumption 3.1. (Coercivity). The operator L(t) is (uniformly) coercive in the sense that there exists

�(t) > 0 such that

�(t) := inf
juj=1

�RehL(t)u; ui
jL(t)uj2 > 0:(3.7)

8



We conclude that for coercive L's, the forward Euler scheme is strongly stable, kI +�tnL(t
n)k � 1, if

and only if

�tn � 2�(tn):

In a generic case, L(tn) represents a spatial operator with a coercivity-bound �(tn), which is proportional

to some power of the smallest spatial scale. In this context the above restriction on the time-step amounts

to the celebrated Courant-Friedrichs-Levy (CFL) stability condition. Our aim is to show that the general

m-stage, m-th order accurate Runge-Kutta scheme is strongly stable under the same CFL condition.

Remark. Observe that the coercivity constant, �, is an upper bound in the size of L; indeed, by Cauchy-

Schwartz, �(t) � jL(t)uj � juj=jL(t)uj2 and hence

kL(t)k = sup
u

jL(t)uj
juj � 1

�(t)
:(3.8)

To make one point we consider the fourth-order Runge-Kutta approximation of (3.6)

k1 = L(tn)un(3.9)

k2 = L(tn+
1
2 )(un +

�tn
2

k1)(3.10)

k3 = L(tn+
1
2 )(un +

�tn
2

k2)(3.11)

k4 = L(tn+1)(un +�tnk
3)(3.12)

un+1 = un +
�tn
6

h
k1 + 2k2 + 2k3 + k4

i
:(3.13)

Starting with second-order and higher the Runge-Kutta intermediate steps depend on the time variation

of L(�), and hence we require a minimal smoothness in time, making

Assumption 3.2. (Lipschitz regularity). We assume that L(�) is Lipschitz. Thus, there exists a constant
K > 0 such that

kL(t)� L(s)k � K

�(t)
jt� sj:(3.14)

We are now ready to make our main result, stating

Proposition 3.3. Consider the coercive systems of ODEs, (3.6)-(3.7), with Lipschitz continuous coef-

�cients (3.14). Then the fourth-order Runge-Kutta scheme (3.9-3.13) is stable under CFL condition,

�tn � 2�(tn);(3.15)

and the following estimate holds

junj � e3Ktn ju0j:(3.16)

Remark. The result along these lines was introduced by Levy and Tadmor [13, Main Theorem], stating the

strong stability of the constant coe�cients s-order Runge-Kutta scheme under CFL condition �tn � Cs�(t
n).
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Here we improve in both simplicity and generality. Thus, for example, the previous bound of C4 = 1=31 [13,

Theorem 3.3] is now improved to a practical time-step restriction with our uniform Cs = 2.

Proof. We proceed in two steps. We �rst freeze the coe�cients at t = tn, considering (here we abbreviate

Ln = L(tn))

j1 = Lnun(3.17)

j2 = Ln(un +
�tn
2

j1) � Ln(I +
�tn
2

Ln)un(3.18)

j3 = Ln(un +
�tn
2

j2) � Ln

�
I +

�tn
2

Ln(I +
�tn
2

Ln)

�
un(3.19)

j4 = Ln(un +�tnj
3)(3.20)

vn+1 = un +
�tn
6

h
j1 + 2j2 + 2j3 + j4

i
:(3.21)

Thus, vn+1 = P4(�tnL
n)un, where following (3.5)

P4(�tnL
n) :=

3

8
I +

1

3
(I +�tL) +

1

4
(I +�tL)2 +

1

24
(I +�tL)4:

Since the CFL condition (3.15) implies the strong stability of forward-Euler, i.e. kI+�tnL
nk � 1, it follows

that kP4(�tnLn)k � 3=8 + 1=3 + 1=4 + 1=24 = 1. Thus,

jvn+1j � junj:(3.22)

Next, we turn to include the time dependence. We need to measure the di�erence between the exact

and the `frozen' intermediate values { the k's and the j's. We have

k1 � j1 = 0(3.23)

k2 � j2 =
h
L(tn+

1
2 )� L(tn)

i
(I +

�tn
2

Ln)un(3.24)

k3 � j3 = L(tn+
1
2 )
�tn
2

(k2 � j2) +
h
L(tn+

1
2 )� L(tn)

i �tn
2

j2(3.25)

k4 � j4 = L(tn+1)�tn(k
3 � j3) +

�
L(tn+1)� L(tn)

�
�tnj

3:(3.26)

Lipschitz continuity (3.14) and the strong stability of forward-Euler imply

jk2 � j2j � K ��tn
2�(tn)

junj � Kjunj:(3.27)

Also, since kLnk � 1
�(tn) , we �nd from (3.18) that jj2j � junj=�(tn), and hence (3.25) followed by (3.27) and

the CFL condition (3.15) imply

jk3 � j3j � �tn
2�(tn)

jk2 � j2j+ K ��tn
2�(tn)

� �tn
2�(tn)

junj �� 2K

�
�tn
2�(tn)

�2
junj � 2Kjunj:(3.28)

Finally, since by (3.19) j3 does not exceed, jj3j < 1
�(tn) (1+

�tn
2�(tn) )junj, we �nd from (3.26) followed by (3.28)

and the CFL condition (3.15),

jk4 � j4j � �tn
�(tn)

jk3 � j3j+ K ��tn
�(tn)

� �tn
�(tn)

�
1 +

�tn
2�(tn)

�
junj(3.29)

� K

 �
�tn
�(tn)

�3
+

�
�tn
�(tn)

�2!
junj � 12Kjunj:

10



We conclude that un+1,

un+1 = vn+1 +
�tn
6

h
2(k2 � j2) + 2(k3 � j3) + (k4 � j4)

i
;

is upper bounded by, consult (3.22), (3.27)-(3.29),

jun+1j � jvn+1j+ �tn
6

h
2Kjunj+ 4Kjunj+ 12Kjunj

i
� (1 + 3K�tn)junj

and the result (3.16) follows.

4. Nonlinear SSP Runge-Kutta Methods. In the previous section we derived SSP Runge-Kutta

methods for linear spatial discretizations. As explained in the introduction, SSP methods are often required

for nonlinear spatial discretizations. Thus, most of the research to date has been in the derivation of SSP

methods for nonlinear spatial discretizations. In [19], schemes up to third order were found to satisfy the

conditions in Lemma 2.1 with CFL coe�cient c = 1. In [6] it was shown that all four stage, fourth-order

Runge-Kutta methods with positive CFL coe�cient c in (2.13) must have at least one negative �i;k, and

a method which seems optimal was found. For large scale scienti�c computing in three space dimensions,

storage is usually a paramount consideration. We review the results presented in [6] about strong stability

preserving properties among such low-storage Runge-Kutta methods.

4.1. Nonlinear methods of second, third and fourth order. Here we review the optimal (in the

sense of CFL coe�cient and the cost incurred by ~L if it appears) SSP Runge-Kutta methods of m-stage,

m-th order, for m = 2; 3; 4, written in the form (2.9).

Proposition 4.1. [6]. If we require �i;k � 0, then an optimal second-order SSP Runge-Kutta method

(2.9) is given by

u(1) = un +�tL(un)(4.1)

un+1 =
1

2
un +

1

2
u(1) +

1

2
�tL(u(1));

with a CFL coe�cient c = 1 in (2.10). An optimal third-order SSP Runge-Kutta method (2.9) is given by

u(1) = un +�tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
�tL(u(1))(4.2)

un+1 =
1

3
un +

2

3
u(2) +

2

3
�tL(u(2));

with a CFL coe�cient c = 1 in (2.10).

In the fourth-order case we proved in [6] that we cannot avoid the appearance of negative �i;k:

Proposition 4.2. [6]. The four-stage, fourth-order SSP Runge Kutta scheme (2.9) with a nonzero

CFL coe�cient c in (2.13) must have at least one negative �i;k.

We thus must settle for �nding an e�cient fourth-order scheme containing ~L, which maximizes the

operation cost measured by c
4+i , where c is the CFL coe�cient (2.13) and i is the number of ~Ls. This way

we are looking for a SSP method which reaches a �xed time T with a minimal number of evaluations of L

11



or ~L. The best method we could �nd in [6] is:

u(1) = un +
1

2
�tL(un)

u(2) =
649

1600
u(0) � 10890423

25193600
�t~L(un) +

951

1600
u(1) +

5000

7873
�tL(u(1))

u(3) =
53989

2500000
un � 102261

5000000
�t~L(un) +

4806213

20000000
u(1)(4.3)

� 5121

20000
�t~L(u(1)) +

23619

32000
u(2) +

7873

10000
�tL(u(2))

un+1 =
1

5
un +

1

10
�tL(un) +

6127

30000
u(1) +

1

6
�tL(u(1)) +

7873

30000
u(2) +

1

3
u(3) +

1

6
�tL(u(3))

with a CFL coe�cient c = 0:936 in (2.13). Notice that two ~Ls must be computed. The e�ective CFL

coe�cient, comparing with an ideal case without ~Ls, is 0:936� 4
6 = 0:624. Since it is di�cult to solve the

global optimization problem, we do not claim that (4.3) is an optimal four stage, 4th-order SSP Runge-Kutta

method.

4.2. Low storage methods. For large scale scienti�c computing in three space dimensions, storage

is usually a paramount consideration. Therefore, low storage Runge-Kutta methods [22], [1], which only

require two storage units per ODE variable, may be desirable. Here we review the results presented in [6]

concerning strong stability preserving properties among such low-storage Runge-Kutta methods.

The general low-storage Runge-Kutta schemes can be written in the form [22], [1]:

u(0) = un; du(0) = 0;

du(i) = Aidu
(i�1) +�tL(u(i�1)); i = 1; : : : ;m;

u(i) = u(i�1) +Bidu
(i); i = 1; : : : ;m; B1 = c;(4.4)

un+1 = u(m);

Only u and du must be stored, resulting in two storage units for each variable.

Following Carpenter and Kennedy [1], the best SSP third-order method found by numerical search in

[6] is given by the system

z1 =
p
36c4 + 36c3 � 135c2 + 84c� 12; z2 = 2c2 + c� 2

z3 = 12c4 � 18c3 + 18c2 � 11c+ 2; z4 = 36c4 � 36c3 + 13c2 � 8c+ 4

z5 = 69c3 � 62c2 + 28c� 8; z6 = 34c4 � 46c3 + 34c2 � 13c+ 2

B2 =
12c(c� 1)(3z2 � z1)� (3z2 � z1)2

144c(3c� 2)(c� 1)2
; B3 =

�24(3c� 2)(c� 1)2

(3z2 � z1)2 � 12c(c� 1)(3z2 � z1)

A2 =
�z1(6c2� 4c+ 1) + 3z3

(2c+ 1)z1 � 3(c+ 2)(2c� 1)2
; A3 =

�z1z4 + 108(2c� 1)c5 � 3(2c� 1)z5
24z1c(c� 1)4 + 72cz6 + 72c6(2c� 13)

with c = 0:924574, resulting in a CFL coe�cient c = 0:32 in (2.6). This is, of course, less optimal than

(4.2) in terms of CFL coe�cient, but the low-storage form is useful for large scale calculations. Carpenter

and Kennedy [1] have also given classes of �ve-stage, fourth-order low-storage Runge-Kutta methods. We

have been unable to �nd SSP methods in that class with positive �i;k and �i;k. A low-storage method with

negative �i;k cannot be made SSP, as ~L cannot be used without destroying the low-storage property.
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4.3. Hybrid multi-step Runge-Kutta methods. Hybrid multi-step Runge-Kutta methods (e.g.,

[10] and [14]) are methods which combine the properties of Runge-Kutta and multi-step methods. We

explore the two-step, two-stage method:

un+
1
2 = �21u

n + �20u
n�1 +�t

�
�20L(u

n�1) + �21L(u
n)
�
; �2k � 0;(4.5)

un+1 = �30u
n�1 + �31u

n+ 1
2 + �32u

n

+�t
�
�30L(u

n�1) + �31L(u
n+ 1

2 ) + �32L(u
n)
�
: �3k � 0:(4.6)

Clearly, this method is SSP under the CFL coe�cient (2.10) if �i;k � 0. We could also consider the case

allowing negative �i;k's, using instead (2.13) for the CFL coe�cient and replacing �i;kL by �i;k ~L for the

negative �i;k's.

For third order accuracy, we have a three parameter family (depending on c, �30, and �31):

�20 = 3c2 + 2c3

�20 = c2 + c3

�21 = 1� 3c2 � 2c3

�21 = c+ 2c2 + c3

�30 =
2 + 2�30 � 3c+ 3�30c+ �31c

3

6(1 + c)
(4.7)

�31 =
5� �30 � 3�31c

2 � 2�31c
3

6c+ 6c2

�32 = 1� �31 � �30

�32 =
�5 + �30 + 9c+ 3�30c� 3�31c

2 � �31c
3

6c
:

The best method we were able to �nd is given by c = 0:4043, �30 = 0:0605 and �31 = 0:6315, and has a

CFL coe�cient c � 0:473. Clearly, this is not as good as the optimal third-order Runge-Kutta method (4.2)

with CFL coe�cient c = 1. We would hope that a fourth-order scheme with a large CFL coe�cient could

be found, but unfortunately this is not the case as is proven in the following

Proposition 4.3. There are no fourth-order schemes (4.5) with all non-negative �i;k.

Proof. The fourth-order schemes are given by a two-parameter family depending on c; �30, and setting �31

in (4.7) with

�31 =
�7� �30 + 10c� 2�30c

c2(3 + 8c+ 4c2)
:

The requirement �21 � 0 enforces, consult (4.7), c � 1
2 . The further requirement �20 � 0 yields

� 3
2 � c � 1

2 . �31 has a positive denominator and a negative numerator for � 1
2 < c < 1

2 , and its denominator

is 0 when c = � 1
2 or c = � 3

2 , thus, we require � 3
2 � c < � 1

2 . In this range, the denominator of �31 is

negative, hence we also require its numerator to be negative, which translates to �30 � �7+10c
1+2c . Finally, we

would require �32 = 1� �31 � �30 � 0, which translates to �30 � c2(2c+1)(2c+3)+7�10c
(2c+1)(2c�1)(c+1)2 . The two restrictions

on �30 gives us the following inequality:

�7 + 10c

1 + 2c
� c2(2c+ 1)(2c+ 3) + 7� 10c

(2c+ 1)(2c� 1)(c+ 1)2
;

which, in the range of � 3
2 � c < � 1

2 , yields c � 1 | a contradiction.
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5. Linear and Nonlinear Multi-step Methods. In this section, we review and further study SSP

explicit multi-step methods (2.14), which were �rst developed in [18]. These methods are r-th order accurate

if

mX
i=1

�i = 1(5.1)

mX
i=1

ik�i = k

 
mX
i=1

ik�1�i

!
; k = 1; :::; r:

We �rst prove a proposition which sets the minimum number of steps in our search for SSP multi-step

methods.

Proposition 5.1. For m � 2, there is no m-step, (m+1)-th order SSP method, and there is no m-step,

m-th order SSP method with all non-negative �i.

Proof. By the accuracy condition (5.1), we clearly have

mX
i=1

p(i)�i =

mX
i=1

p0(i)�i(5.2)

for any polynomial p(x) of degree at most r satisfying p(0) = 0.

When r = m+ 1, we could choose

p(x) =

Z x

0

q(t)dt; q(t) =

mY
i=1

(i� t):(5.3)

Clearly p0(i) = q(i) = 0 for i = 1; :::;m. We also claim (and prove below) that all the p(i)'s, i = 1; : : : ;m,

are positive. With this choice of p in (5.2), its right-hand side vanishes, while the left hand side is strictly

positive if all �i � 0 | a contradiction.

When r = m, we could choose

p(x) = x(m� x)m�1:

Clearly p(i) � 0 for i = 1; :::;m, equality holds only for i = m. On the other hand, p0(i) = m(1 � i)(m �
i)m�2 � 0, equality holds only for i = 1 and i = m. Hence (5.2) would have a negative right side and a

positive left side and would not be an inequality, if all �i and �i are non-negative, unless the only nonzero

entries are �m, �1 and �m. In this special case we have �m = 1 and �1 = 0 to get a positive CFL coe�cient

c in (2.15). The �rst two order conditions in (5.1) now leads to �m = m and 2�m = m, which cannot be

simultaneously satis�ed.

We conclude with the proof of the

Claim. p(i) =
R i
0 q(t)dt > 0; q(t) :=

Qm
i=1(i� t).

Indeed, q(t) oscillates between being positive on the even intervals I0 = (0; 1); I2 = (2; 3); : : : and being

negative on the odd intervals, I1 = (1; 2); I3 = (3; 4); : : :. The positivity of the p(i)'s for i � (m+1)=2 follows

since the integral of q(t) over each pair of consecutive intervals is positive, at least for the �rst [(m + 1)=2]

intervals,

p(2k + 2)� p(2k) =

Z
I2k

jq(t)jdt�
Z
I2k+1

jq(t)jdt =
Z
I2k

�
Z
I2k+1

j(1� t)(2� t) : : : (m� t)jdt

=

Z
I2k

j(1� t)(2� t) : : : (m� 1� t)j � (j(m� t)j � jtj)dt > 0; 2k + 1 � (m+ 1)=2:
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For the remaining intervals, we note the symmetry of q(t) w.r.t. the midpoint (m + 1)=2, i.e., q(t) =

(�1)mq(m+ 1� t), which enables us to write for i > (m+ 1)=2

p(i) =

Z (m+1)=2

0

q(t)dt + (�1)m
Z i

(m+1)=2

q(m+ 1� t)dt

=

Z (m+1)=2

0

q(t)dt + (�1)m
Z (m+1)=2

m+1�i

q(t0)dt0:(5.4)

Thus, if m is odd then p(i) = p(m+ 1� i) > 0 for i > (m+ 1)=2. If m is even, then the second integral on

the right of (5.4) is positive for odd i's, since it starts with a positive integrand on the even interval, Im+1�i.

And �nally, if m is even and i is odd, then the second integral starts with a negative contribution from its

�rst integrand on the odd interval, Im+1�i, while the remaining terms that follow cancel in pairs as before; a

straightforward computation shows that this �rst negative contribution is compensated by the positive gain

from the �rst pair, i.e.,

p(m+ 2� i) >

Z 2

0

q(t)dt+

Z m+2�i

m+1�i

q(t)dt > 0; m even; i odd:

This concludes the proof of our claim.

We remark that [4] contains a result which states that there are no linearly stable m-step, (m + 1)-th

order method when m is odd. When m is even, such linearly stable methods exist but would require negative

�i. This is consistent with our result.

In the remainder of this section we will discuss optimal m step, m-th order SSP methods (which must

have negative �i according to Proposition 5.1 and m step, (m� 1)-th order SSP methods with positive �i.

For two-step, second-order SSP methods, a scheme was given in [18] with a CFL coe�cient c = 1
2

(Scheme 1 in Table 5.1). We prove this is optimal in terms of CFL coe�cients.

Proposition 5.2. For two-step, second-order SSP methods, the optimal CFL coe�cient c in (2.15) is
1
2 .

Proof. The accuracy condition (5.1) can be explicitly solved to obtain a one-parameter family of solutions

�2 = 1� �1; �1 = 2� 1

2
�1; �2 = �1

2
�1:

The CFL coe�cient c is a function of �1 and it can be easily veri�ed that the maximum is c = 1
2 achieved

at �1 =
4
5 .

We move on to three-step, second-order methods. It is now possible to have SSP schemes with positive

�i and �i. One such method is given in [18] with a CFL coe�cient c = 1
2 (Scheme 2 in Table 5.1). We prove

this is optimal in CFL coe�cient in the following proposition. We remark that this multi-step method has

the same e�ciency as the optimal two-stage, second-order Runge-Kutta method (4.1). This is because there

is only one L evaluation per time step here, compared with two L evaluations in the two-stage Runge-Kutta

method. Of course, the storage requirement here is larger.

Proposition 5.3. If we require �i � 0, then the optimal three-step, second-order method has a CFL

coe�cient c = 1
2 .
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Proof. The coe�cients of the three-step, second-order method are given by,

�1 =
1

2
(6� 3�1 � �2 + �3) ; �2 = �3 + 2�1 � 2�3; �3 =

1

2
(2� �1 + �2 + 3�3) :

For CFL coe�cient c > 1
2 we need �k

�k
> 1

2 for all k. This implies

2�1 > �1 ) 6� 4�1 � �2 + �3 > 0

2�2 > �2 ) �6 + 4�1 � �2 � 4�3 > 0

This means that

�2 � �3 < 6� 4�1 < ��2 � 4�3 ) 2�2 < �3�3:

Thus, we would have a negative �.

We remark that if more steps are allowed, then the CFL coe�cient can be improved. Scheme 3 in Table

5.1 is a four-step, second-order method with positive �i and �i and a CFL coe�cient c = 2
3 .

We now move to three-step, third-order methods. In [18] we gave a three-step, third-order method with

a CFL coe�cient c � 0:274 (Scheme 4 in Table 5.1). A computer search gives a slightly better scheme

(Scheme 5 in Table 5.1) with a CFL coe�cient c � 0:287.

Next we move on to four-step, third-order methods. It is now possible to have SSP schemes with positive

�i and �i. One example was given in [18] with a CFL coe�cient c = 1
3 (Scheme 6 in Table 5.1). We prove this

is optimal in the CFL coe�cient in the following proposition. We remark again that this multi-step method

has the same e�ciency as the optimal three-stage, third-order Runge-Kutta method (4.2). This is because

there is only one L evaluation per time step here, compared with three L evaluations in the three-stage

Runge-Kutta method. Of course, the storage requirement here is larger.

Proposition 5.4. If we require �i � 0, then the optimal four-step, third-order method has a CFL

coe�cient c = 1
3 .

Proof. The coe�cients of the four step, third order method are given by,

�1 =
1

6
(24� 11�1 � 2�2 + �3 � 2�4) ; �2 = �6 + 3�1 � 1

2
�2 � �3 +

3

2
�4;

�3 = 4� 3

2
�1 + �2 +

1

2
�3 � 3�4; �4 =

1

6
(�6 + 2�1 � �2 + 2�3 + 11�4) :

For a CFL coe�cient c > 1
3 we need �k

�k
> 1

3 for all k. This implies:

24� 13�1 � 2�2 + �3 � 2�4 > 0;�36 + 18�1 � 5�2 � 6�3 + 9�4 > 0;

24� 9�1 + 6�2 + �3 � 18�4 > 0;�6 + 2�1 � �2 + 2�3 + 9�4 > 0:

Combining these (9 times the �rst inequality plus 8 times the second plus 3 times the third) we get:

�40�2 � 36�3 > 0;

which implies a negative �.

We again remark that if more steps are allowed, the CFL coe�cient can be improved. Scheme 7 in Table

5.1 is a �ve-step, third-order method with positive �i and �i and a CFL coe�cient c = 1
2 . Scheme 8 in Table

5.1 is a six-step, third-order method with positive �i and �i and a CFL coe�cient c = 0:567.
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Table 5.1

SSP multi-step methods (2.14)

# steps order CFL �i �i

m r c

1 2 2 1
2

4
5 ;

1
5

8
5 ;� 2

5

2 3 2 1
2

3
4 ; 0;

1
4

3
2 ; 0; 0

3 4 2 2
3

8
9 ; 0; 0;

1
9

4
3 ; 0; 0; 0

4 3 3 0.274 4
7 ;

2
7 ;

1
7

25
12 ;� 20

21 ;
37
84

5 3 3 0.287 2973
5000 ;

351
1250 ;

623
5000

1297
625 ;� 49

50 ;
1087
2500

6 4 3 1
3

16
27 ; 0; 0;

11
27

16
9 ; 0; 0;

4
9

7 5 3 1
2

25
32 ; 0; 0; 0;

7
32

25
16 ; 0; 0; 0;

5
16

8 6 3 0.567 108
125 ; 0; 0; 0; 0;

17
125

36
25 ; 0; 0; 0; 0;

6
25

9 4 4 0.154 29
72 ;

7
24 ;

1
4 ;

1
18

481
192 ;� 1055

576 ;
937
576 ;� 197

576

10 4 4 0.159 1989
5000 ;

2893
10000 ;

517
2000 ;

34
625

601613
240000 ;� 1167

640 ;
130301
80000 ;� 82211

240000

11 6 4 0.245 747
1280 ; 0; 0; 0;

81
256 ;

1
10

237
128 ; 0; 0; 0;

165
128 ;� 3

8

12 5 4 0.021 1557
32000 ;

1
32000 ;

1
120 ;

2063
48000 ;

9
10

5323561
2304000 ;

2659
2304000 ;

904987
2304000 ;

1567579
768000 ; 0

13 5 5 0.077 1
4 ;

1
4 ;

7
24 ;

1
6 ;

1
24

185
64 ;� 851

288 ;
91
24 ;� 151

96 ;
199
576

14 5 5 0.085 1
4 ;

13
50 ;

8
25 ;

7
50 ;

3
100

52031
18000 ;� 26617

9000 ;
1412
375 ;� 14407

9000 ;
6161
18000

15 6 5 0.130 7
20 ;

3
10 ;

4
15 ; 0;

7
120 ;

1
40

291201
108000 ;� 198401

86400 ;
88063
43200 ; 0;� 17969

43200 ;
73061
432000

We now move on to four-step, fourth-order methods. In [18] we gave a four-step, fourth-order method

(Scheme 9 in Table 5.1) with a CFL coe�cient c � 0:154. A computer search gives a slightly better scheme

with a CFL coe�cient c � 0:159, Scheme 10 in Table 5.1. If we allow two more steps, we can improve the

CFL coe�cient to c = 0:245, Scheme 11 in Table 5.1.

Next we move on to �ve-step, fourth-order methods. It is now possible to have SSP schemes with positive

�i and �i. The solution can be written in the following �ve-parameter family:

�5 = 1� �1 � �2 � �3 � �4; �1 =
1

24
(55 + 9�2 + 8�3 + 9�4 + 24�5) ;

�2 =
1

24
(5� 64�1 � 45�2 � 32�3 � 37�4 � 96�5) ;

�3 =
1

24
(5 + 32�1 + 27�2 + 40�3 + 59�4 + 144�5) ;

�4 =
1

24
(55� 64�1 � 63�2 � 64�3 � 55�4 � 96�5) :
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We can clearly see that to get �2 � 0 we would need �1 � 5
64 , and also �1 � 55

24 , hence the CFL coe�cient

cannot exceed c � �1
�1

� 3
88 � 0:034. A computer search gives a scheme (Scheme 12 in Table 5.1) with a

CFL coe�cient c = 0:021. The signi�cance of this scheme is that it disproves the belief that SSP schemes

of order four or higher must have negative � and hence must use ~L (see Proposition 4.2 for Runge-Kutta

methods). However, the CFL coe�cient here is probably too small for the scheme to be of much practical

use.

We �nally look at �ve-step, �fth-order methods. In [18] a scheme with CFL coe�cient c = 0:077 is

given (Scheme 13 in Table 5.1). A computer search gives us a scheme with a slightly better CFL coe�cient

c � 0:085, Scheme 14 in Table 5.1. Finally, by increasing one more step, one could get [18] a scheme with

CFL coe�cient c = 0:130, Scheme 15 in Table 5.1.

We list in Table 5.1 the multi-step methods studied in this section.

6. Implicit SSP Methods.

6.1. Implicit TVD stable scheme. Implicit methods are useful in that they typically eliminate the

step-size restriction (CFL) associated with stability analysis. For many applications, the backward-Euler

method possesses strong stability properties that we would like to preserve in higher-order methods. For

example, it is easy to show a version of Harten's lemma [8] for the TVD property of the implicit backward-

Euler method:

Lemma 6.1. (Harten). The following implicit backward-Euler method

un+1j = unj +�t
h
Cj+ 1

2

�
un+1j+1 � un+1j

��Dj� 1
2

�
un+1j � un+1j�1

�i
(6.1)

where Cj+ 1
2
and Dj� 1

2
are functions of un and/or un+1 at various (usually neighboring) grid points satisfying

Cj+ 1
2
� 0; Dj� 1

2
� 0;(6.2)

is TVD in the sense of (2.5) for arbitrary �t.

Proof. Taking a spatial forward di�erence in (6.1) and moving terms, one getsh
1 +�t

�
Cj+ 1

2
+Dj+ 1

2

�i �
un+1j+1 � un+1j

�
= unj+1 � unj +�tCj+ 3

2

�
un+1j+2 � un+1j+1

�
+�tDj� 1

2

�
un+1j � un+1j�1

�
:

Using the positivity of C and D in (6.2), one getsh
1 +�t

�
Cj+ 1

2
+Dj+ 1

2

�i ��un+1j+1 � un+1j

��
� ��unj+1 � unj

��+�tCj+ 3
2

��un+1j+2 � un+1j+1

��+�tDj� 1
2

��un+1j � un+1j�1

�� ;
which, upon summing over j, would yield the TVD property (2.5).

Another example is the cell entropy inequality for the square entropy, satis�ed by the discontinuous

Galerkin method of arbitrary order of accuracy in any space dimensions when the time discretization is by

a class of implicit time discretization including backward-Euler and Crank-Nicholson, again without any

restriction on the time step �t [11].

As in Section 2 for explicit methods, here we would like to discuss the possibility of designing higher-

order implicit methods that share the strong stability properties of backward-Euler without any restriction

on the time step �t.
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Unfortunately, we are not as lucky in the implicit case. Let us look at a simple example of second-order

implicit Runge-Kutta methods:

u(1) = un + �1�tL(u
(1))(6.3)

un+1 = �2;0u
n + �2;1u

(1) + �2�tL(u
n+1):

Notice that we have only a single implicit L term for each stage and no explicit L terms, in order to avoid

time step restrictions necessitated by the strong stability of explicit schemes. However, since the explicit

L(u(1)) term is contained indirectly in the second stage through the u(1) term, we do not lose generality in

writing the schemes as the form in (6.3) except for the absence of the L(un) terms in both stages.

To simplify our example we assume L is linear. Second-order accuracy requires the coe�cients in (6.3)

to satisfy

�2;1 =
1

2�1(1� �1)
; �2;0 = 1� �2;1; �2 =

1� 2�1
2(1� �1)

:(6.4)

To obtain a SSP scheme out of (6.4) we would require �2;0 and �2;1 to be non-negative. We can clearly see

that this is impossible as �2;1 is in the range [4;+1) or (�1; 0).

We will use the following simple numerical example to demonstrate that a non-SSP implicit method

may destroy the non-oscillatory property of the backward-Euler method, despite the same underlying non-

oscillatory spatial discretization. We solve the simple linear wave equation

ut = ux(6.5)

with a step-function initial condition:

u(x; 0) =

(
1; if x � 0

0; if x > 0:
(6.6)

ux in (6.5) is approximated by the simple �rst order upwind di�erence:

L(u)j =
1

�x
(uj+1 � uj) :

The backward-Euler time discretization

un+1 = un +�tL(un+1)

for this problem is unconditionally TVD according to Lemma 6.1. We can see on the left of Fig. 6.1 that the

solution is monotone. However, if we use (6.3)-(6.4) with �1 = 2 (which results in positive �2 =
3
2 , �2;0 =

5
4 ,

but a negative �2;1 = � 1
4 ) as the time discretization, we can see on the right of Fig. 6.1 that the solution is

oscillatory.

In the next two subsections we discuss the rather disappointing negative results about the non-existence

of high order SSP Runge-Kutta or multi-step methods.

6.2. Implicit Runge-Kutta methods. A general implicit Runge-Kutta method for (2.1) can be

written in the form

u(0) = un;

u(i) =

i�1X
k=0

�i;ku
(k) +�t�iL(u

(i)); �i;k � 0; i = 1; :::;m(6.7)

un+1 = u(m):
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Fig. 6.1. First-order upwind spatial discretization. Solution after 100 time steps at CFL number �t
�x

= 1:4. Left: �rst-

order backward-Euler time discretization; Right: non-SSP second-order implicit Runge-Kutta time discretization (6.3)-(6.4)

with �1 = 2.

Notice that we have only a single implicit L term for each stage and no explicit L terms. This is to avoid

time step restrictions for strong stability properties of explicit schemes. However, since explicit L terms are

contained indirectly beginning at the second stage from u of the previous stages, we do not lose generality

in writing the schemes as the form in (6.7) except for the absence of the L(u(0)) terms in all stages. If these

L(u(0)) terms are included, we would be able to obtain SSP Runge-Kutta methods under restrictions on �t

similar to explicit methods.

Clearly, if we assume that the �rst-order implicit Euler discretization

un+1 = un +�tL(un+1)(6.8)

is unconditionally strongly stable, kun+1k � kunk, then (6.7) would be unconditionally strongly stable under

the same norm provided �i > 0 for all i. If �i becomes negative, (6.7) would still be unconditionally strongly

stable under the same norm if �iL is replaced by �i ~L whenever the coe�cient �i < 0, with ~L approximates the

same spatial derivative(s) as L, but is unconditionally strongly stable for �rst-order implicit Euler, backward

in time:

un+1 = un ��t~L(un+1):(6.9)

As before, this can again be achieved, for hyperbolic conservation laws, by solving (2.12), the negative in

time version of (2.2). Numerically, the only di�erence is the change of upwind direction.

Unfortunately, we have the following negative result which completely rules out the existence of SSP

implicit Runge-Kutta schemes (6.7) of order higher than one.

Proposition 6.1. If (6.7) is at least second-order accurate, then �i;k cannot be all non-negative.

Proof. We prove that the statement holds even if L is linear. In this case second-order accuracy implies

i�1X
k=0

�i;k = 1; Xm = 1; Ym =
1

2
(6.10)
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where Xm and Ym can be recursively de�ned as

X1 = �1; Y1 = �21 ; Xm = �m +

m�1X
i=1

�m;iXi; Ym = �mXm +

m�1X
i=1

�m;iYi:(6.11)

We now show that, if �i;k � 0 for all i and k, then

Xm � Ym <
1

2
;(6.12)

which is clearly a contradiction to (6.10). In fact, we use induction on m to prove

(1� a)Xm � Ym < cm(1� a)2 for any real number a;(6.13)

where

c1 =
1

4
; ci+1 =

1

4(1� ci)
:(6.14)

It is easy to show that (6.14) implies

1

4
= c1 < c2 < � � � < cm <

1

2
:(6.15)

We start with the case m = 1. Clearly,

(1� a)X1 � Y1 = (1� a)�1 � �21 �
1

4
(1� a)2 = c1(1� a)2

for any a. Now assume (6.13)-(6.14), hence also (6.15), is valid for all m < k, for m = k we have

(1� a)Xk � Yk = (1� a� �k)�k +
k�1X
i=1

�k;i [(1� a� �k)Xi � Yi]

� (1� a� �k)�k + ck�1(1� a� �k)
2

� 1

4(1� ck�1)
(1� a)2

= ck(1� a)2

where in the �rst equality we used (6.11), in the second inequality we used (6.10) and the induction hypothesis

(6.13) and (6.15), and the third inequality is a simple maximum of a quadratic function in �k. This �nishes

the proof.

We remark that the proof of Proposition 6.1 can be simpli�ed, using existing ODE results in [5], if all

�i's are non-negative or all �i's are non-positive. However, the case containing both positive and negative

�i's cannot be handled by existing ODE results, as L and ~L do not belong to the same ODE.

6.3. Implicit multi-step methods. For our purpose, a general implicit multi-step method for (2.1)

can be written in the form

un+1 =

mX
i=1

�iu
n+1�i +�t�0L(u

n+1); �i � 0:(6.16)

Notice that we have only a single implicit L term and no explicit L terms. This is to avoid time step

restrictions for norm properties of explicit schemes. If explicit L terms are included, we would be able to

obtain SSP multi-step methods under restrictions on �t similar to explicit methods.
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Clearly, if we assume that the �rst-order implicit Euler discretization (6.8) is unconditionally strongly

stable under a certain norm, then (6.16) would be unconditionally strongly stable under the same norm

provided that �0 > 0. If �0 is negative, (6.16) would still be unconditionally strongly stable under the same

norm if L is replaced by ~L.

Unfortunately, we have the following negative result which completely rules out the existence of SSP

implicit multi-step schemes (6.16) of order higher than one.

Proposition 6.2. If (6.16) is at least second-order accurate, then �i cannot be all non-negative.

Proof. Second-order accuracy implies

mX
i=1

�i = 1;

mX
i=1

i�i = �0;

mX
i=1

i2�i = 0:(6.17)

The last equality in (6.17) implies that �i cannot be all non-negative.

7. Concluding Remarks. We have systematically studied strong stability preserving, or SSP, time

discretization methods, which preserve strong stability of the forward-Euler (for explicit methods) or the

backward-Euler (for implicit methods) �rst-order time discretizations. Runge-Kutta and multi-step methods

are both investigated. The methods listed here can be used for method-of-lines numerical schemes for partial

di�erential equations, especially for hyperbolic problems.
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